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1 Introduction

In this report we present a local search algorithm for geometric hitting set problems that was obtained by

Mustafa and Ray in [7]. We then look at three applications of this algorithm - hitting halfspaces in R3,

dominating terrain-like graphs and guarding weakly visible polygons. Finally, we prove the optimality of

local search algorithms for certain geometric hitting set problems. In this introductory section, we first

define the Hitting Set problem and prove that it is equivalent to the Set Cover problem. This is done

in Lemma 1.1. We then present a simple family of local search algorithms for the Hitting Set problem

(Algorithm 1.2) and compute its running time. The main result of this paper is to prove that this family of

algorithms is a PTAS for a restricted case of the Hitting Set problem. We take a small detour and prove

Radon’s Theorem as Theorem 1.5 before proving this result in Section 2.

For a set P , we let P(P ) denote the power set of P .

Problem (Hitting Set). Let P be a finite set and D ⊆ P(P ). A set I ⊆ P is called a hitting set of D if

I ∩D ̸= ∅ for all D ∈ D. Find a hitting set I ′ of D of the smallest size.

The tuple (P,D) in an instance of the Hitting Set problem is denoted by R(P,D) and is called the range

space of this instance. P is called the ground set and D is called the set of ranges.

Problem (Set Cover). Let E be a finite set of elements and S ⊆ P(E). A set J ⊆ S is called a set cover

of E if ∪S∈JS = E. Find a set cover J ′ of E of the smallest size.

Lemma 1.1. The Hitting Set and Set Cover problems are equivalent.

Proof. Let R(P,D) be an instance of the Hitting Set problem. Let P = {p1, p2 . . . pn} and D =

{D1, D2 . . . Dm}. Construct a Set Cover instance (E,S) as follows: let E = D and S = {S1, S2 . . . Sn}
where Si is defined to be {Dj ∈ D | pi ∈ Dj} for each i. Let I = {pi1 , pi2 . . . pik} ⊆ P be a hitting set of

D. Consider the corresponding subset J = {Si1 , Si2 . . . Sik} of S. We prove that J is a set cover of E. Let

e ∈ E be an arbitrary element. Since E = D, e = Dj for some j. Since I is a hitting set of D, there is a

pil ∈ I such that pil ∈ Dj . By construction, e = Dj ∈ Sil . Thus, J covers e. Since e was arbitrary, J is a set
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cover of E. Using symmetric arguments, it is easy to see that a set cover of E in the constructed instance

corresponds to a hitting set of D of the original instance. This implies that the hitting sets of R(P,D) are in

one-one correspondence with the set covers of (E,S). Since this correspondence also preserves cardinality,

an optimal solution of the Hitting Set instance corresponds to one for the Set Cover instance.

Now, consider a Set Cover instance (E,S) where E = {e1, e2 . . . en} and S = {S1, S2 . . . Sm}. Consider

the Hitting Set instance R(P,D) where P = S and D = {D1, D2 . . . Dn} where Di is defined to be

{Sj | ei ∈ Sj} for each i. Clearly, a set cover of (E,S) is a hitting set of R(P,D) and the vice versa.

This completes the proof of this lemma since any algorithm that approximates the Set Cover problem

(respectively the Hitting Set problem) can be used to approximate, with the same factor, the Hitting

Set problem (respectively the Set Cover problem).

Algorithm 1.2 (k-Level Local Search). Let k be a fixed natural number and R(P,D) be an instance of

the Hitting Set problem. We construct a hitting set S of D as follows: Let S be P . If there exists U ⊆ S

where |U | = k and U ′ ⊆ P where |U ′| = k − 1 such that (S \ U) ∪ U ′ remains a hitting set, replace S by

(S \ U) ∪ U ′. Repeat this procedure till no such U and U ′ exist.

Lemma 1.3. Given an input instance R(P,D) of the Hitting Set problem with |P | = n and |D| = m,

Algorithm 1.2 runs in O(mn2k+1) time.

Proof. Clearly, at each improvement step the size of S decreases by one. Thus, Algorithm 1.2 runs at most

n times. At each step, we need to check at most nCk · nCk−1 sets to choose U and U ′ or determine that no

such sets exist. Checking whether an improvement is a hitting set takes O(mn) time. Thus, the algorithm

runs in O(mn2k+1) time.

In the next section (Lemma 2.5) we will prove the following: given a range space R(P,D) that follows the

locality condition (defined below) and an arbitrary ϵ > 0, one can find a k ∈ O(ϵ−2) in polynomial time

such that the k-level local search algorithm returns a (1 + ϵ)-approximate solution for any instance of the

Hitting Set problem.

Definition (Locality Condition). A range space R(P,D) is said to satisfy the locality condition if, for

any two disjoint subsets R and B of P , it is possible to construct a planar bipartite graph G((R,B), E) -

that is, a graph with bipartition R and B and edge set E, such that for any D ∈ D which intersects both R

and B, there exists a (u, v) ∈ E where u ∈ D ∩R and v ∈ D ∩B.

In Section 3 we will prove that range spaces arising from some typical geometric hitting set problems satisfy

the locality condition. We conclude this section by proving Radon’s Theorem. First, we prove a small lemma

which is referenced from these lecture notes [6].

Lemma 1.4. Let n ∈ N and P = {p1, p2 . . . pn+2} ⊂ Rn. Then, there exists {α1, α2 . . . αn+2} ⊂ R such that:

(i) There exists a αi ∈ {α1, α2 . . . αn+2} which is non-zero.

(ii)
∑n+2

i=1 αipi = 0.

(iii)
∑n+2

i=1 αi = 0.

Proof. Consider the points P ′ = {p2−p1, p3−p1 . . . pn+2−p1}. Since |P ′| = n+1, P ′ is linearly dependent.
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Hence, there exists {β2, β3 . . . βn+2} ⊂ R, not all elements zero, such that
∑n+2

i=2 βi(pi − p1) = 0. Hence,

n+2∑
i=2

βipi −
n+2∑
i=2

βi · p1 = 0

Let α1 = −
∑n+2

i=2 βi and αi = βi for all i ∈ {2, 3 . . . n+ 2}. Then, clearly, {α1, α2 . . . αn+2} satisfy the three

required conditions.

Definition (Convex Hull). The convex hull of P , where P ⊆ Rn for some n ∈ N, is the smallest convex

set that contains P . This set is denoted by conv(P ).

Note that the convex hull of a set is indeed a convex set.

Theorem 1.5 (Radon’s Theorem). Let n ∈ N and P = {p1, p2 . . . pn+2} ⊂ Rn. Then, there exists a

partition P1, P2 of P such that conv(P1) ∩ conv(P2) ̸= ∅.

Proof. By Lemma 1.4, there exists a set {α1, α2 . . . αn+2} ⊂ R, not all elements zero, such that
∑n+2

i=1 αipi = 0

and
∑n+2

i=1 αi = 0. Let P1 = {pi | αi > 0} and P2 = {pi | αi ≤ 0}. Let S =
∑

i:pi∈P1
αi. Note that

S ̸= 0. Since conv(P1) is a convex set, x =
∑

i:pi∈P1

αi

S pi ∈ conv(P1). Furthermore, since
∑n+2

i=1 αi = 0,

S = −
∑

i:pi∈P2
αi. Hence,

x =
∑

i:pi∈P1

αi

S
pi =

1

S
·

∑
i:pi∈P1

αipi =
−1

S
·

∑
i:pi∈P2

αipi =
∑

i:pi∈P2

αi

−S
pi ∈ conv(P2)

Hence, x ∈ conv(P1) ∩ conv(P2). This completes the proof of this theorem.

2 Approximations Using Local Search

In this section, we design a PTAS for the Hitting Set problem in range spaces that satisfy the locality

condition. That is, we will prove that there exists a collection of algorithms that run in polynomial time,

say {Aϵ}ϵ>0, such that Aϵ produces a (1 + ϵ)-approximate solution for Hitting Set. For any vertex v

of a graph G(V,E), we let NG(v) = {u ∈ V | (u, v) ∈ E}. For a subset W of V , we define NG(W ) as

∪w∈WNG(w).

Lemma 2.1. Let R(P,D) be a range space that satisfies the locality condition. Let R be an optimal hitting

set of D and B be the hitting set that is returned by a k-level local search algorithm. Assume that R and B

are disjoint. Then there exists a planar bipartite graph G((R,B), E) such that for any B′ ⊆ B with |B′| ≤ k,

(B \B′) ∪NG(B
′) is a hitting set of D.

Proof. Let G((R,B), E) be the planar bipartite graph that is ensured by R(P,D) satisfying the locality

condition. Let D ∈ D be an arbitrary element. Since both R and B are hitting sets of D, D ∩R and D ∩B

are non-empty. Assume that D is only hit by elements of B′. Then, by the locality condition, there is a

u ∈ R ∩D and v ∈ B ∩D = B′ ∩D such that (u, v) ∈ E. Thus, (B \ B′) ∪NG(B
′) hits D. If D is hit by

elements of B outside B′, then, clearly, (B \B′)∪NG(B
′) hits D. Hence, (B \B′)∪NG(B

′) is a hitting set

of D.
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Corollary 2.2. Let R(P,D) be a range space that satisfies the locality condition. Let R be an optimal

hitting set of D and B be the hitting set that is returned by a k-level local search algorithm. Assume that R

and B are disjoint. Then there exists a planar bipartite graph G((R,B), E) such that for any B′ ⊆ B with

|B′| ≤ k, |NG(B
′)| ≥ |B′|.

Proof. By Lemma 2.1, (B \B′) ∪NG(B
′) is a hitting set of D. Since no local improvements are possible in

B, |NG(B
′)| ≥ |B′|.

Let G(V,E) be a graph. Let G = {G1, G2 . . . Gm} be a collection of subsets of V such that ∪m
i=1Gi = V . For

a Gi ∈ G, define the boundary of Gi, denoted by B(Gi), as {v | v ∈ Gi ∩Gj for some Gj ∈ G \ {Gi}}. Define

I (Gi), the interior of Gi, as Gi \B(Gi) for each Gi ∈ G. We use the following result proved by Frederickson

in 1987 [3].

Theorem 2.3 (Planar Graph Partition). Let H(V,E) be a planar graph and let |V | = n. Let t be an

arbitrary natural number. Then, there exists a collection of subsets of vertices, G = {G1, G2 . . . Gm} with

∪m
i=1Gi = V and |Gi| ≤ t for all Gi ∈ G such that

∑m
i=1 |B(Gi)| ≤ γn√

t
where γ is some fixed constant.

Theorem 2.4. Let G((R,B), E) be a planar bipartite graph where |R| ≥ 2 such that for all B′ ⊆ B with

|B′| ≤ k, for some k ∈ N, |NG(B
′)| ≥ |B′|. Then, |B| ≤ (1 + c√

k
)|R| for some c ∈ R.

Proof. By Theorem 2.3, there exists a collection of subsets of vertices, G = {G1, G2 . . . Gm} such that

∪m
i=1Gi = R ∪ B and |Gi| ≤ k for all Gi ∈ G. Furthermore,

∑m
i=1 |B(Gi)| ≤ γn√

k
where n = |R| + |B| and

γ is some fixed constant. Let BR(Gi) and BB(Gi) be the boundary vertices of Gi in R and B respectively.

IR(Gi) and IB(Gi) are defined similarly. Let Gi ∈ G be an arbitrary element. Since |Gi| ≤ k, |IB(Gi)| ≤ k.

Hence, by our supposition,

|IB(Gi)| ≤ |NG(IB(Gi))|

Note that NG(IB(Gi)) ⊆ Gi ∩ R. This implies that |IB(Gi)| ≤ |IR(Gi)| + |BR(Gi)|. Adding |BB(Gi)| on
both sides, and noting that Gi ∩B = IB(Gi) ∪ BB(Gi), we get:

|IB(Gi)|+ |BB(Gi)| ≤ |IR(Gi)|+ |BR(Gi)|+ |BB(Gi)| =⇒ |Gi ∩B| ≤ |IR(Gi)|+ |B(Gi)|

Summing over all Gi ∈ G,

m∑
i=1

|Gi ∩B| ≤
m∑
i=1

|IR(Gi)|+
m∑
i=1

|B(Gi)|

=⇒ |B| ≤
m∑
i=1

|IR(Gi)|+
m∑
i=1

|B(Gi)| (∪m
i=1Gi = R ∪B)

=⇒ |B| ≤
m∑
i=1

|IR(Gi)|+
γn√
k

=⇒ |B| ≤ |R|+ γ
|R|+ |B|√

k

=⇒ (1− γ√
k
)|B| ≤ (1 +

γ√
k
)|R|
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Fix k ≥ 4γ2 and set c = 4γ. Also, let α = γ√
k
. Note that α ≤ 1

2 . If we let N0 denote N ∪ {0}, we have:

|B| ≤ 1 + α

1− α
|R|

= (1 + α) ·
∑
i∈N0

αi · |R|

= (1 + α) · (1 + α+

∞∑
i=2

αi) · |R|

= (1 + α) · (1 + α+ α · α

1− α
) · |R|

≤ (1 + α) · (1 + α+ α) · |R| (α ≤ 1− α)

= (1 + 3α+ 2α2) · |R|

≤ (1 + 4α) · |R| (2α2 ≤ α)

= (1 +
c√
k
) · |R|

Hence, |B| ≤ (1 + c√
k
)|R|, proving our claim.

Lemma 2.5. Let R(P,D) be a range space that satisfies the locality condition. Then, given an ϵ > 0, there

exists a k ∈ O(ϵ−2) such that the k-level local search algorithm returns an (1 + ϵ)-approximate solution for

this instance of the Hitting Set problem.

Proof. Let R be an optimum hitting set of R(P,D). Let γ be the constant specified in Theorem 2.3 and

c = 4γ. Fix k = c2

ϵ2 . Let B be the hitting set returned by the k-level local search algorithm.

Case 2.5.1 (R ∩ B = ∅). By Corollary 2.2, there is a planar bipartite graph G((R,B), E) such that for any

B′ ⊆ B where |B′| ≤ k, |NG(B
′)| ≥ |B′|. Hence, by Theorem 2.4, |B| ≤ (1 + c√

k
)|R|. Replacing k by c2

ϵ2 , we

have our claim.

Case 2.5.2 (R ∩ B ̸= ∅). Let R̂ = R \ (R ∩ B) and B̂ = B \ (R ∩ B). Furthermore, we let P̂ = P \ (R ∩ B)

and D̂ = D \ {D ∈ D | R ∩B hits D}. Clearly, R(P̂ , D̂) satisfies the locality condition. Also, note that R̂ is

an optimal hitting set of R(P̂ , D̂) and B̂ is a k-level locally optimum hitting set of this instance. Hence, by

Case 2.5.1, we obtain: |B̂| ≤ (1 + ϵ) · |R̂|. Adding |R ∩B| both sides, we have,

|B̂|+ |R ∩B| ≤ (1 + ϵ) · |R̂|+ |R ∩B| =⇒ |B| ≤ (1 + ϵ) · (|R̂|+ |R ∩B|) =⇒ |B| ≤ (1 + ϵ) · |R|

This completes the proof of this case.

Hence, an O(ϵ−2)-level local search algorithm returns a (1 + ϵ)-approximate solution for this instance of the

Hitting Set problem.

In Section 4, we will prove that this algorithm is, up to sublinear factors, optimal.
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3 Problems Satisfying the Locality Condition

In this section, we will design a PTAS for three geometric problems: hitting halfspaces in R3, dominating

terrain-like graphs and guarding weakly visible polygons. We do this by proving that each of these problems

satisfy the locality condition. Then, given any ϵ > 0, we run Algorithm 1.2 on the appropriate k given by

Lemma 2.5 to get a (1 + ϵ)-approximate solution.

3.1 Hitting Halfspaces

Let X ⊆ R3 be a finite set of points in and H be a finite set of open halfspaces of R3. We are required to find

a subset of X of minimum size which has at least one point from all the halfspaces of H. We guess an o ∈ X

and add it to our solution. Let P = X \ {o} and D ⊆ H be the subset of halfspaces that are not incident on

o. Let R(P,D) be the range space corresponding to P and D. Note the abuse of notation here: since the

set of ranges is a subset of the power set of the ground set, we should have first taken the intersection of the

halfspaces of H with P before defining R(P,D). However, since this notation is more convenient, we use it

in this subsection.

If we produce S, a near optimal hitting set of R(P,D), then S ∪ {o} is clearly a near optimal hitting set of

R(X,H). We now prove that R(P,D) satisfies the locality condition.

Theorem 3.1. Let R and B be two disjoint subsets of P . Then, there exists a planar bipartite graph

G((R,B), E) with the following property: given any open halfspace H of H such that H ∩R and H ∩B are

non-empty, there is a u ∈ H ∩R and a v ∈ H ∩B such that (u, v) ∈ E.

Proof. We construct this graph by embedding the the points of R ∪B onto the faces of the convex hull, say

C, of this set. We ensure that the edges of E are within each face and are non-crossing. Once we have this,

we choose a point s which is sufficiently close to one of the faces of C and a plane parallel to this face and

lies below C. We map each point p embedded in the convex hull to the point that −→sp hits the plane. It is

clear that this embedding onto the plane has non-crossing edges and hence proves that G is planar.

We refer to the points in R as red points and those in B as blue points. We add edges to E in two steps.

In step one, we add all the red-blue edges (edges which are incident on one red point and one blue point)

of C to E. In preparation for the second step, we triangulate the faces of C. For each p ∈ R ∪ B which is

not a vertex of C, we let π(p) be the point on the face of C that −→op intersects. For the sake of simplicity,

we assume that none of the points map to the edges of the triangulated faces of C. Since H is a set of

open halfspaces, this assumption is indeed valid since we can slightly “perturb” the points of an instance so

that the corresponding range space instance does not change. Let ∆ denote a triangulated face of C and

Q denote the set of points mapped to to a point inside ∆. We have four cases based on the number of red

vertices that ∆ contains. We only need to consider the cases where ∆ has 2 or 3 red vertices since the other

two cases will follow using symmetrical arguments for blue vertices.

Case 3.1.1 (∆ has 2 red vertices and 1 blue vertex). We add edges between the projections of red points of

Q and the blue vertex of ∆ to E. We also add the edges between the projections of blue points of Q and

the 2 red vertices of ∆. This is illustrated in Figure 1a.

We now prove that this is indeed possible without the edges crossing. Let b1 denote the blue vertex of ∆ and
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(a) (b)

Figure 1: Part (a) illustrates Case 3.1.1 while part (b) illustrates Case 3.1.2. Projections of the red vertices
of Q are marked by red squares while those of blue vertices are marked by blue disks. The vertices of ∆ are
also marked by red squares and blue disks.

r1, r2 denote the two red vertices of ∆. Let r ∈ Q be a red vertex and prb1 be a path from π(r) to b1 which

lies inside ∆. Clearly, ∆ \ {prb1} is path connected. Hence, after adding all edges between the projections of

red points of Q and b1, the set of remaining points of ∆ is path connected. The edges between the projections

of blue points of Q and the red vertices of ∆ are added in order of their distance from r1r2, the line segment

between r1 and r2. For each blue point b, we ensure that the region bounded by pbr1 · r1r2 · p−1
br2

, where p−1
br2

denotes the path that is the reverse path of pbr2 , does not contain the projections of any of the unprocessed

blue points of Q.

Note that the case where ∆ has 2 blue vertices and 1 red vertex is symmetrical to this one.

Case 3.1.2 (∆ has 3 red vertices). Consider a blue vertex b of Q. Let r1, r2 and r3 denote the vertices of ∆.

If there exists a a vertex v of ∆ such that there exists no open halfspace of R3 which contains only b and

v out of {b, r1, r2, r3, o}; then we add edges between b and the other two vertices of ∆. If no such v exists,

then we add edges between b and all three vertices of ∆. This is illustrated in Figure 1b.

We now prove that there is at most one b ∈ Q which is connected to all three vertices of ∆. Assume

that there are two blue vertices of Q, say b1 and b2 whose projections are joined to r1, r2 and r3. Let

D = {b1, b2, r1, r2, r3}. By definition, there exists open halfspaces Hij , where i ∈ {1, 2} and j ∈ {1, 2, 3},
such that Hij ∩D = {bi, rj}. Since b1 and b2 lie on the same side of ∆, there exists an open halfspace that

contains only b1 and b2 in D. Hence, the points in D are in convex position. Since |D| = 5, by Theorem 1.5,

there exists a Radon partition of D. Since the points of D are in convex position, there does not exist a

(1, 4)-Radon partition of D. Thus, D has a (2, 3)-Radon partition. Let Y and Z be such a partition of D

where |Y | = 2 and |Z| = 3. Since b1 and b2 lie in the interior of C, b1b2 does not intersect ∆. Hence, Y

cannot be {b1, b2}. Since b1 and b2 lie on the same side of ∆, Y cannot be a subset of {r1, r2, r3}. This proves
that Y = {bi, rj} for some i ∈ {1, 2} and j ∈ {1, 2, 3}. Assume, without loss of generality, that i = j = 1.

Then, by definition, b1r1 intersects the triangle described by b2, r2 and r3 at some point, say p. Then, since
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open halfspaces are convex, any halfspace containing b1 and r1 contains p. Hence, it must contain at least

one of b2, r2 or r3. This contradicts our assumption that H11 exists and thus proves our claim.

Now, we prove that adding these edges is possible without them crossing. Let b∗ be the blue vertex whose

projection is connected to the three red vertices r1, r2 and r3 of ∆. Construct paths pb∗r1 and pb∗r2 such

that the region bounded by pb∗r1 · r1r2 · p−1
b∗r2

contains only the projections of the blue vertices which are

joined to r1 and r2. Now, we construct the path pb∗r3 such that the regions bounded by pb∗r1 · r1r3 · p−1
b∗r3

and pb∗r2 ·r2r3 ·p−1
b∗r3

contain only the projections of the blue vertices which are to be joined to r1 and r3 and

to r2 and r3 respectively. We now join the projections of the other blue vertices in order of their distances

from the sides of the triangle as in Case 3.1.1.

We have now constructed a planar bipartite graph G((R,B), E). We complete our analysis by proving the

following: for any open halfspace H of R3 which does not contain o and where the sets H ∩ R and H ∩ B

are non-empty, there exists a u ∈ H ∩ π(R) and a v ∈ H ∩ π(B) such that (u, v) ∈ E.

If H ∩C contains both red and blue vertices, then it contains a polygonal chain whose vertices are in H ∩C

from a red to a blue vertex of C. Hence, there exists a red-blue edge in H ∩ C and this edge is in E as we

added all red-blue edges of C to E in the first step of construction of G. Now, without loss in generality,

assume that H ∩ C ⊆ R. Consider an open halfspace H ′ which is parallel to H and is contained in H.

Furthermore, assume that H ′ contains exactly one blue point. Again, note that we can assume this since

H is a finite set of open halfspaces. It is clear that such a halfspace indeed exists. Let b be the blue point

that H ′ contains. Since o /∈ H, o /∈ H ′. Hence, π(b) ∈ H ′. If ∆ is the triangle that b is mapped to, then H ′

contains at least one vertex of ∆.

If b was connected to exactly one vertex of ∆, then ∆ has exactly one red vertex, say r1. This implies that

r1 ∈ H ′. Since (π(b), r1) ∈ E, our claim is true. If b is connected to all three vertices of ∆, we are trivially

done. Hence, we are left with the case where b is connected to exactly two vertices of ∆. If ∆ has two red

vertices and one blue vertex (as in Case 3.1.1), then our claim is true since π(b) is connected to both the red

vertices of ∆. Hence, we assume that we are in Case 3.1.2. If H ′ contains 2 vertices of ∆, then we are done

since π(b) is connected to at least two red vertices in this case. If not, H ′ ∩ (B ∪ {r1, r2, r3, o}) = {b, rj}
where r1, r2 and r3 are vertices of ∆ and j ∈ {1, 2, 3}. Then, by construction, it is not the case that π(b) is

connected only to the other two vertices of ∆. Hence, we infer that (π(b), rj) ∈ E. This completes the proof

of our claim.

By the previous theorem, we have that R(P,D) satisfies the locality condition. Hence, there exists a PTAS

to solve this hitting set problem. As discussed in the beginning of this section, thi provides a PTAS to solve

the hitting set problem where the ground set is R3 and the set of ranges is a subset of the open halfspaces

of R3.

3.2 Dominating Terrain-Like Graphs

Definition (Terrain-Like Graph). Let H(V, F ) be an undirected graph where n = |V |. G is said to be

terrain-like if there exists a bijective function π : V 7→ {1, 2 . . . n} such that for all {a, b, c, d} ⊆ V where

π(a) < π(b) < π(c) < π(d) and (a, c), (b, d) belong to the edge set, (a, d) ∈ F .
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In a terrain-like graph, for u, v ∈ V , we say u precedes v, denoted by u ≺ v if π(u) < π(v). We say that

u dominates v if u ∈ NH [v]. Here, NH [v] denotes the closed neighbourhood of the vertex v in H. It is

well known that the visibility graph of terrains (which are x-monotone polygonal chains) are terrain-like [2].

Indeed, the name “terrain-like graphs” is derived from terrains.

In this part of the report, which is referenced from [1], we prove that the Dominating Set problem (defined

below) admits a PTAS in terrain-like graphs. We prove this by showing that this problem induces a range

space which satisfies the locality condition.

Definition (Dominating Set). Let G(V,E) be an undirected graph and n = |V |. A subset I of V is called

a dominating set if, for all v ∈ V , NG[v] ∩ I ̸= ∅. Find a dominating set of smallest size of G.

Note that the Dominating Set problem can be restated as the Hitting Set problem: let P = V and

D = {N [v] | v ∈ V }. Hence, finding a dominating set of a graph is equivalent to finding a hitting set of

R(P,D).

Let H(V, F ) be a terrain-like graph. As in Section 2, let R denote an optimal hitting set of this instance

and B denote the hitting set returned by a k-level local search algorithm (Algorithm 1.2). We assume,

without loss of generality, that R ∩ B = ∅. To use Lemma 2.5, all that we are required to do is to prove

that there exists a planar bipartite graph G((R,B), E) such that for all v ∈ V , there is a r ∈ NH [v] ∩ R

and b ∈ NH [v] ∩B such that (r, b) ∈ E. To construct such a graph, we first define a few terms and prove a

simple lemma.

For a w ∈ V , if there is a v ∈ R ∪ B such that v dominates w and precedes it, then, we define λ(w)

to be the first such vertex (that is, the vertex whose π(·) is the smallest and dominates w). Similarly, if

there is a v ∈ R ∪ B such that v dominates w and is preceded by w, then, we define ρ(w) to be the last

such vertex. Since R and B are dominating sets of H and are disjoint, for each w ∈ V , at least one of

λ(w) or ρ(w) exists. Let A1 = {(λ(w), w) | w ∈ V for which λ(w) is defined}. Define A2 similarly with

respect to ρ. Let v ∈ V such that there is a (λ(u), u) ∈ A1 such that λ(u) ≺ v ≺ u. Let (λ(w), w) be

the arc amongst these arcs for which w is the smallest. We say that (λ(w), w) is λ-associated with v. Let

S1 = {(λ(w), v) | (λ(w), w) is λ-associated with v}. We define (w, ρ(w)) similarly and say that (w, ρ(w)) is

ρ-associated with v. Let S2 = {(v, ρ(w)) | (w, ρ(w)) is ρ-associated with v}. Finally, let S3 = {(λ(w), ρ(w)) |
w ∈ V \ (R ∪B) such that λ(w) and ρ(w) exists}.

The following observation follows directly from the definition of terrain-like graphs.

Observation 3.2. Arcs of A1 are non-crossing. That is, there does not exist (λ(u), u), (λ(v), v) ∈ A1 such

that λ(u) ≺ λ(v) ≺ u ≺ v. Similarly, arcs of A2 are non-crossing as well.

Hence, the graphs G1(V,A1) and G2(V,A2) are planar - place the vertices in V equidistantly on the x-axis

and join the edges using semicircular arcs. This also implies that the graphs Ḡ1(V,A1∪S1) and Ḡ2(V,A2∪S2)

are planar since arcs in S1 and S2 lie “within” arcs in A1 and A2 respectively. The construction of Ḡ1 is

illustrated in Figure 2. On drawing the arcs in A1 ∪ S1 above the x-axis and those in A2 ∪ S2 below it, we

get that G3(V,E3), where E3 = (A1 ∪ S1) ∪ (A2 ∪ S2), is planar.

Theorem 3.3. Consider the graph G((R,B), E) where E be the collection of red-blue edges in E3 ∪ S3.

Then, G is planar. Furthermore, for all vertices v ∈ V , there is a r ∈ NH [v] ∩ R and b ∈ NH [v] ∩ B such
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Figure 2: Vertces in R are marked by red squares, vertices in B are marked by blue discs and vertices that
are in neither sets are marked by black crosses. The arcs marked by dashed lines are the ones belonging to
A1 while the ones marked by solid lines belong to S1.

that (r, b) ∈ E.

Proof. Since G3 is planar, it follows that G((R,B), E) is planar. We now prove the second part of the claim.

For any vertex x ∈ R∪B, we let colour(x) be red if x ∈ R and blue if x ∈ B. Since R∩B = ∅, this is well
defined. Consider an arbitrary v ∈ V .

Case 3.3.1 (v /∈ R ∪ B). Assume that that both λ(v) and ρ(v) exist. We have two possibilities depending

on the colours of these two vertices. If colour(λ(v)) ̸= colour(ρ(v)), then (λ(v), ρ(v)) ∈ E. Since λ(v)

and ρ(v) dominate v by definition, we are done. Hence, assume that colour(λ(v)) = colour(ρ(v)). Since

R and B are dominating sets of V , there is a u ∈ R ∪ B with colour(u) ̸= colour(λ(v)) such that u

dominates v. Assume that u ≺ v. The proof for when v ≺ u will follow symmetrically. Let x be the first such

vertex with the above properties. Clearly, we have λ(v) ≺ x ≺ v. Hence, there exists an arc (λ(w), w) ∈ A1

that is associated with x. If w = v, then, (λ(w) = λ(v), x) ∈ S1. Since colour(λ(v)) ̸= colour(x),

(λ(v), x) ∈ E. Furthermore, both λ(v) and x are in NH [v]. This proves our claim. If w ̸= v, we have

that λ(w) ≺ x ≺ w ≺ v. Since (λ(w), w) ∈ F and (x, v) ∈ F , (λ(w), v) ∈ F . Hence, λ(w) dominates v.

Since x was chosen to be the first vertex that dominated v whose colour is different from colour(λ(v)),

colour(λ(w)) ̸= colour(x). This proves that (λ(w), x) ∈ E. As we have proved that both these vertices

dominate v, we are done. This case is illustrated in Figure 3.

If only λ(v) exists for v, then, there exists a u which dominates v such that colour(λ(v)) ̸= colour(u).

Since ρ(v) does not exist, u ≺ v. Hence, we can proceed with the proof exactly as in the previous paragraph.

Similarly, if only ρ(v) exists for v, then this case will be the same as when v ≺ u in our discussion in the

previous paragraph.

Case 3.3.2 (v ∈ R ∪ B). Again, assume that both λ(v) and ρ(v) exist for v. If either of these two vertices

have a different colour as compared to v, then, since they both dominate v and are neighbours of v in G,

we are done. Hence, assume that colour(λ(v)) = colour(v) = colour(ρ(v)). Then, there exists a vertex

u such that u dominates v and colour(λ(v)) ̸= colour(u). Now, we proceed exactly as in Case 3.3.1. If

only one of λ(v) and ρ(v) exists for v, then, as noted in the previous case, our proof remains.

This completes our proof.

Hence, given a terrain-like graph H(V, F ) and a ϵ > 0, by Lemma 2.5 there exists a k ∈ O(ϵ−2) such that

Algorithm 1.2 returns a (1 + ϵ)-approximate solution for the Dominating Set problem for the instance

H.
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λ(v) ρ(v)vux wλ(w)

Figure 3: This illustrates Case 3.3.1. Vertces in R are marked by red squares, vertices in B are marked by
blue discs and vertices that are in neither sets are marked by black crosses. The arcs marked by dashed lines
are the ones belonging to F while the ones marked by solid lines belong to E.

3.3 Guarding Weakly Visible Polygons

Let V = {v1, . . . , vn} be a finite sequence of at least three points in R2. The polygonal chain defined by V

is the curve specified by the line segments connecting vi and vi+1 for all 1 ≤ i < n. If v1 = vn, then we say

that the polygonal chain is closed. We define a polygon as the region bounded by a closed polygonal chain.

A polygon is simple if the polygonal chain it is associated with does not cross itself. The vertices and edges

of the polygonal chain corresponding to the polygon are called its vertices and edges respectively. In this

section of the report, we only work with simple polygons. Furthermore, we use V to denote the vertex set

of a polygon. We say that two points p, q of the polygon see each other if the line segment joining them

lies within the polygon. For any point p in the polygon, we let vis(p) be the set of all points seen by p.

Similarly, for a subset I of the polygon, vis(I) is the set of points of the polygon that are seen by at least

one point of I.

Problem (Polygonal Vertex Guarding). Let P be a polygon. A subset I of V is guards V if vis(I) ⊇ V .

Find a subset of V of the smallest size that guards V .

We look at a subclass of polygons, called weakly visible polygons for which Polygonal Vertex Guarding

admits a PTAS. We do this by proving that the visibility graph of these types of polygons are terrain-like.

From the discussion in the previous subsection, our result follows. The results presented in this subsection

were obtained by Ashur et al. in 2019 [1].

Definition (WV Polygon). A polygon P is weakly visible (or WV in short) if there exists an edge (u, v)

of the polygon such that for every point p on the boundary of P , there exists a q on the edge (u, v) which

sees p.

Examples of WV polygons are presented in Figures 4a and 4b. We say that a WV polygon, visible from the

edge (u, v), is convex if the internal angles measured at u and v are less than 180◦. A WV polygon is reflex

if it is not convex. We also assume, without loss in generality, that this edge lies on the x-axis.

Definition (Visibility Graph). The visibility graph of a polygon P is the undirected graph GP (V,E)

where E = {(p, q) ∈ V 2 | p sees q}.
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Figure 4: Part (a) illustrates convex WV polygon while part (b) illustrates a reflex WV polygon. Both these
polygons are visible from the (u, v) edge which is coloured red and has a heavier stroke than the other edges.
In (a), four vertices a, b, c and d are chosen such that a sees c and b sees d. The line segments between
these two pairs of vertices are drawn using dashed lines. The intersection of ac and bd is marked by o. The
line segment between a and d is drawn in a dashed-dotted style. In (b), vi and vj denote the first and last
vertices excluding u and v that lie above the x-axis. The region below the x-axis upto these two vertices are
coloured blue.

Observation 3.4. An instance P of the Polygonal Vertex Guarding problem is equivalent to the

Dominating Set problem whose input is GP (V,E), the visibility graph of P .

We will now show that the visibility graphs of convex WV polygons are terrain-like. First, we prove a simple

lemma.

Lemma 3.5. Let P be a WV polygon that is visible from an edge (u, v). Then, no point in P lies below

the x-axis.

Proof. On the contrary, assume that there exists a vertex w of P that lies below the x-axis. Clearly, no

points on the interior of the edge (u, v) can see below the x-axis. Since the interior angles at u and v are

convex, they cannot see any point below the x-axis as well. Hence, w is not visible from the edge (u, v), a

contradiction to our assumption that P is weakly visible from (u, v).

Theorem 3.6. Let P be a convex WV polygon which is visible from the edge (u, v). Order the vertices

V = {u = v1, v2 . . . vn−1, vn = v} as they appear on the polygon on a clockwise traversal from u. Then, if

GP (V,E) is the visibility graph of P , for all a, b, c and d in V such that a ≺ b ≺ c ≺ d where (a, c) ∈ E and

(b, d) ∈ E, (a, d) ∈ E.

Proof. Let a, b, c and d be four such vertices of P . Since b and d lie on opposite sides of the line segment

ac, bd intersects ac at some point o in P . This is illustrated in Figure 4a. For two vertices vi and vj with

i < j, we let pvivj denote the path from vi to vj along the edges of the polygon in the clockwise direction.

Consider the paths uv, pua, pad and pdv. Assume that (a, d) /∈ E. Then, a and d do not see each other in

P . Hence, one of these four paths must cross ad. Clearly, if pad crosses ad, then it must cross at least one

of ao or do. Since (a, c) and (b, d) are in E, this is a contradiction. By Lemma 3.5, both a and d lie above
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or are on the x-axis. Hence, uv does not cross the line segment ad. Also, if pua crosses ad, then, the point

with the lowest y-coordinate that a can see lies strictly above the x-axis. Hence, it will not be visible from

the (u, v) edge, a contradiction. Similarly, if pdv crosses ad, then d is not visible from the (u, v) edge. Hence,

(a, d) ∈ E.

By the results of the previous subsection, we have the following: given a convex WV polygon P and a

ϵ > 0, by Lemma 2.5 there exists a k ∈ O(ϵ−2) such that Algorithm 1.2 is a (1 + ϵ)-approximation for the

Polygonal Vertex Guarding problem for the instance P .

We now extend this result to provide a PTAS for any WV polygon. Let P be a WV polygon which is

visible from its edge (u, v). As in Figure 4b, assume that P is reflex. Let vi denote the first vertex after u

which lies above the x-axis and vj denote the last vertex before v which lies above the x-axis. We make two

observations regarding the vertices that lie between u and vi and those between vj and v (the region marked

blue in Figure 4b).

Observation 3.7. For all vk ∈ V such that u ≺ vk ≺ vi, u sees vk. Similarly, for all vk ∈ V such that

vj ≺ vk ≺ v, v sees vk.

Observation 3.8. For all vk ∈ V such that u ≺ vk ≺ vi, vis(u) ⊇ vis(vk). Similarly, for all vk ∈ V such

that vj ≺ vk ≺ v, vis(v) ⊇ vis(vk).

By Observation 3.8, we can assume that the optimal guard set does not contain any vertices between u and

vi or between vj and v. Let P ′ denote the polygon described by {u, vi, vi+1 . . . vj−1, vj , v}. Then, P ′ is a

convex WV polygon. Hence, given an ϵ′ > 0, we can obtain a (1 + ϵ′)-approximate solution by running a

suitable k-level local search algorithm on the GP ′(V,E). Let I be the set obtained by adding u and v to this

solution. By Observation 3.7, I guards P . Since we are adding a small number of extra guards (at most

two) to our solution, given any ϵ > 0, assuming that the optimal guard set is large, we can adjust ϵ′ in such

a way that I is a (1 + ϵ)-approximate guarding set of P . We state this discussion as the final result of this

section below.

Theorem 3.9. Let P be a WV polygon. Then, given any ϵ > 0, there is a k ∈ O(ϵ−2) such that the k-level

local search algorithm run on GP (V,E) gives a (1 + ϵ)-approximate guard set of P . Hence, there exists a

PTAS for the Polygonal Vertex Guarding problem for WV polygons.

4 Optimality

Let G(V,E) be a graph. For a k ∈ N, we say that G is k-expanding if, for all W ⊆ V where |W | ≤ k,

|NG(W )| ≥ |W |. In this section, we produce a family {Gn((Rn, Bn), En)}n∈N of planar bipartite graphs

which are k-expanding such that |Bn| is, up to a small factor, (1+ c√
k
)|Rn| thereby proving that Algorithm 1.2

is optimal for problems that give rise to such graphs.

A subset S of V is called a separator of G if G[V \S] is not connected and each of its connected components

have at most ⌊ 2|V |
3 ⌋-many vertices. Let G be a family of graphs. G is said to have the separator property

with parameter s ∈ [0, 1] if there exists a c ∈ R such that for all G(V,E) ∈ G there exists a separator S of

G with |S| ≤ c · |V |1−s. G is said to be monotone if, for all G ∈ G and all subgraphs G′ of G, G′ belongs to
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G.

Simple examples of monotone families are forests and planar graphs. We now prove that trees have the

separator property with parameter s = 1 (and hence for all s ∈ [0, 1]). This is referenced from a proof

presented on math.stackexchange by user Brandon du Preez.

Lemma 4.1. Let T (V,E) be a tree. Then, there exists a separator S = {s} of T .

Proof. We define a function C : V 7→ N by letting C(v) be the maximum number of vertices a component

in T [V \ {v}]. Let s ∈ V be the vertex that minimizes C - that is, C(s) ≤ C(v) for all v ∈ V . Assume,

for the sake of contradiction, that C(s) > ⌊ 2|V |
3 ⌋. Then, there exists a component T ′(V ′, E′) of G[V \ {s}]

such that |V ′| > ⌊ 2|V |
3 ⌋. Since T is a tree, it is connected. Hence, T ′ has a vertex, say w, such that

(s, w) ∈ E. Moreover, since T is acyclic, this is the only such edge between vertices in V ′ and V \ V ′. Let

T ′′(V ′′, E′′) = T [V \ V ′]. Since |V ′| > ⌊ 2|V |
3 ⌋,

|V ′′| <
⌈
|V |
3

⌉
=⇒ |V ′′| < |V ′| (4.1)

Now, consider C(w). Every component of T [V \ {w}] is a proper subgraph of T ′ or a subgraph of T ′′. Then,

by Equation (4.1), we have that C(w) < |V ′|. Hence, C(w) < C(s), a contradiction to our assumption that

s minimizes C. This proves that our premise that C(s) > ⌊ 2|V |
3 ⌋ is incorrect. This proves our lemma since

S = {s} is a separator.

We state the celebrated Planar Separator Theorem [5] which proves that planar graphs have the separator

property with s = 1
2 . While its proof uses techniques similar to the ones above, it is considerably more

complicated and is thus beyond the scope of this report.

Theorem 4.2 (Planar Separator). Let G(V,E) be a planar graph. Then, there exists a separator S of G

such that |S| ≤
√
8 · |V | 12 .

In 2019, Mustafa and Jartoux [4] proved that Theorem 2.4 is optimal up to a sublinear factor. In particular,

they proved the following theorem.

Theorem 4.3. There exists constants k0, c0 ∈ N such that for all k ∈ N where k ≥ k0, there exists a family

of planar bipartite graphs Gn((Rn, Bn), En) for each n ∈ N such that:

(i) Gn is k-expanding for all n ∈ N.

(ii) |Rn|, |Bn| ∈ Θ(n) for all n ∈ N.

(iii) |Bn| ≥ (1 + c0√
k
)|Rn| − o(n) as n → ∞.

In fact, they prove a much more general statement:

Theorem 4.4. Given a positive integer d, there exists constants kd, cd ∈ N such that for all k ∈ N where

k ≥ kd, there exists a family of graphs Gn((Rn, Bn), En) for each n ∈ N such that:

(i) Gn, and all its subgraphs, have the separator property for s = 1
d for all n ∈ N.

(ii) Gn is k-expanding for all n ∈ N.

14

https://math.stackexchange.com/a/4107049/833910


(iii) |Rn|, |Bn| ∈ Θ(n) for all n ∈ N.

(iv) |Bn| ≥ (1 + cd · k−
1
d )|Rn| − o(n) as n → ∞.

Since planar graphs have the separator property when s = 1
2 , Theorem 4.3 is a special case of Theorem 4.4

(when d = 2). The proof for arbitrarily large d is a little more unwieldy, but follows the same structure as

our proof.

We now construct a family of planar bipartite graphs {Gn((Rn, Bn), En)}n∈N which have the three properties

listed above. For each n ∈ N, we call Rn to be the set of red vertices and Bn to be the set of blue vertices.

Since this construction is geometric (each vertex of Gn is a point in R2), we often interchange the terms

“vertices” and “points”. For a point p ∈ R2, we let x(p) denote its x-coordinate and y(p) denote its

y-coordinate.

Let L ≥ 2 be a natural number. We will, at the end of this section, fix it to be a function of k. We construct

Gn in two steps. First, fix a −→τ ∈ R2 with x(−→τ ) = y(−→τ ). Consider Ξ, the L × L regular integer grid in

R2 which is anchored at −→τ . This has L2-many cells and (L + 1)2-many points. The bottom left vertex

of a cell C, is called its anchor vertex and is denoted by anc(C). We use x(C) and y(C) to denote the

x-coordinate and y-coordinate of anc(C) respectively. Clearly, each vertex of Ξ, apart from those with one

of the coordinate values equal to L + x(−→τ ), is an anchor to exactly one cell. This cell is called its top cell.

The cell whose anchor vertex is −→τ is called the lowest cell of Ξ while the red vertex at τ is called the lowest

vertex of Ξ. A block slab of Ξ is a subset of its cells which are in the same row or column.

(a) (b)

Figure 5: Part (a) illustrates the construction of G
−→τ with L = 3 while part (b) illustrates the construction

of Gn with t = 3 and G
−→τ as translates. Vertices of R

−→τ and Rn are marked by red squares while those of
B

−→τ and Bn are marked by blue disks. The outline of the grids are marked using dashed lines while edges of
G

−→τ and Gn are marked using solid lines.

We now define a planar bipartite graph G
−→τ ((R

−→τ , B
−→τ ), E−→τ ) on Ξ (Figure 5a). R

−→τ is just the set of points

which define Ξ. We place a blue vertex at the center of each cell of Ξ except for the lowest cell. In the lowest
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cell, we place blue vertices at (x(−→τ ) + 1
4 , y(

−→τ ) + 3
4 ) and (x(−→τ ) + 3

4 , y(
−→τ ) + 1

4 ). Construct an edge between

the blue vertex in a cell (other than the lowest cell) to the four red vertices that define it. For all such

vertices, we refer to the anchor vertex of the cell that contains it as its anchor vertex. Join the blue vertex

at (x(−→τ ) + 1
4 , y(

−→τ ) + 3
4 ) to all the vertices that define the lowest cell except for (x(−→τ ) + 1, y(−→τ )) and the

blue vertex at (x(−→τ )+ 3
4 , y(

−→τ )+ 1
4 ) to all the vertices that define the lowest cell except for (x(−→τ ), y(−→τ )+1).

It is clear that the graph so constructed is planar.

We now complete the construction of Gn((Rn, Bn), En). Let t ∈ N. We will, along with L, fix it to be a

function of k and n at the end of this section. Gn((Rn, Bn), En) consists of a t× t grid containing t2-many

translates of G
−→τ . Each translate is indexed and anchored by −→τ ∈ {0, 1 . . . t − 1}2. Rn (Bn) is just the

union of all red (blue) vertices in these translates. Note that we identify the red vertices that share the same

coordinates in these translates as one. En too is just the union of the edges defined in G
−→τ . The author

refers the reader to Figure 5b for an illustration of this construction.

The subset of vertices in Rn whose x-coordinate or y-coordinate is equal to tL is called Rb. Let S be a subset

of cells in the grid underlying Gn. The bounding box of S is defined to be the smallest rectangular subgrid

that contains S. We make the following observations regarding the size of Rn and Bn.

|Rn| = (tL+ 1)2 (4.2)

|Bn| = t2(L2 + 1) (4.3)

We show the following: for all B′ ⊆ Bn where |B′| is bounded above by some function of L (which we will

manipulate later to ensure that the function itself is at most k), |NGn
(B′)| ≥ |B′|.

Fix a B′ ⊆ Bn and let R′ = NGn(B
′). Cells of Gn which contain vertices from B′ are called non-empty

while those that do not contain such vertices are said to be empty. A vertex of R′ which also belongs to

Rb or whose top cell is empty is called a boundary vertex. The total number of boundary vertices in Gn is

denoted by δ. For a translate G
−→τ , we define d−→τ = 1 if both the blue vertices in the lowest cell of G

−→τ is in

B′ and define d−→τ = 0 otherwise. Moreover, we let δ−→τ to be the number of boundary vertices that are in

G
−→τ .

We prove a small lemma comparing δ to the size of B′.

Lemma 4.5. δ ≥
√

|B′|
2 .

Proof. Let S be the set of non-empty cells of G and B be its bounding box. Let the length and breadth of

B be p and q respectively. Clearly, each slab of B contains at least 1 boundary vertex. Hence, δ ≥ p and

δ ≥ q. This implies that

δ2 ≥ pq ≥ |S| (4.4)

Moreover, since each cell in S contains at most 2 blue vertices, 2|S| ≥ |B′|. Plugging this inequality into

Equation (4.4), we have

δ2 ≥ |B′|
2

=⇒ δ ≥
√

|B′|
2

This proves our lemma.
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For each vertex in B′, its anchor vertex belongs to R′. We now prove that there is an injective mapping

from B′ to R′ if |B′| is “large enough”. In each non-empty cell, map a blue vertex to its anchor vertex. For

all G
−→τ where d−→τ = 1, exactly one blue vertex remains unmapped. Meanwhile, the boundary vertices of Gn

remain unmapped to a blue vertex. For those G
−→τ which have δ−→τ ≥ 2, map one of them to the unmapped

blue vertex of its lowest cell. Let δ′ be the number of boundary vertices are still unmapped to a blue vertex.

Clearly, δ′ ≥ δ
2 . By Lemma 4.5, we have

δ′ ≥ 1

2
·
√

|B′|
2

(4.5)

We are now left with those G
−→τ where d−→τ = 1 and δ−→τ ≤ 1. We prove that each such translate must contain

at least L2

2 -many vertices from B′.

Lemma 4.6. Let G
−→τ be a translate such that δ−→τ ≤ 1 and d−→τ = 1. Then, |B′ ∩B

−→τ | ≥ L2

2 .

Proof. First, assume that δ−→τ = 0. Hence, G
−→τ does not contain any boundary vertices. Clearly, this implies

that every vertex in B
−→τ is in B′ proving that |B′| ≥ L2 ≥ L2

2 .

Now, assume that δ−→τ = 1. Then, G
−→τ has exactly one boundary vertex, say vr. Since d−→τ = 1, B′ contains

both of the blue vertices of the lowest cell of G
−→τ . Assume, without loss in generality, that the lowest vertex

of G
−→τ is placed at the origin. Hence, vr is not the lowest vertex of G

−→τ implying that at least one of x(vr)

or y(vr) are positive. We assume that y(vr) > 0. The proof for the other case will follow symmetrically.

Consider the block slab Ξ′ containing cells whose anchor vertices lie on the x-axis.

Claim 4.6.1. Every cell of Ξ′ is non-empty.

Proof of Claim. Assume, for the sake of contradiction, that there exists a cell in Ξ′ which is empty. Let C be

such a cell with the lowest x-coordinate. Since d−→τ = 1, C is not the lowest cell of G
−→τ . Hence, there exists a

cell C ′ ∈ Ξ′ such that x(C ′) = x(C)− 1. Moreover, by our assumption, C ′ is non-empty. This implies that

anc(C) ∈ R′. Since y(C) = 0, anc(C) ̸= vr. This contradicts our assumption that vr is the only boundary

vertex of G
−→τ and completes the proof of this claim. ♢

We now prove that “most” cells of G
−→τ are non-empty.

Claim 4.6.2. Every cell in G
−→τ whose x-coordinate is different from that of vr is non-empty.

Proof of Claim. Consider a cell C ∈ G
−→τ such that x(C) ̸= x(yr). Consider the block slab Ξ′′ which contains

the cells in G
−→τ with x-coordinates same as that of C. Since the cell in Ξ′′ whose y-coordinate is 0 is non-

empty by Claim 4.6.1, using arguments similar to the ones presented in Claim 4.6.1, we can prove that every

cell in Ξ′′ is non-empty. In particular, C is non-empty. This proves our claim. ♢

By Claim 4.6.2, we have that the L(L− 1)-many cells whose x-coordinates are different from that of vr are

non-empty. Hence,

|B′ ∩B
−→τ | ≥ L(L− 1) ≥ L2

2

This completes the proof of the lemma.

Since those G
−→τ where d−→τ = 1 and δ−→τ ≤ 1 have exactly one unmapped blue vertex, by Lemma 4.6, there
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are at most 2|B′|
L2 -many unmapped blue vertices left in Gn. Now, note that

|B′| ≤ 2−5L4 =⇒ 4|B′|2

L4
≤ 1

4
· |B|′

2
=⇒ 2|B′|

L2
≤ 1

2
·
√

|B|′
2

=⇒ 2|B′|
L2

≤ δ′ (4.6)

That is, Equation (4.6) implies that if |B′| ≤ 2−5L4, then the number of unmapped blue vertices is at most

the number of unmapped red vertices.

To complete the proof of Theorem 4.3, we must set appropriate values for L and t given a k and n. Con-

sider:

(i) L = ⌈(2−5k)
1
4 ⌉.

(ii) t = ⌈
√
n

L ⌉.

Then, by Equations (4.2) and (4.2), we have,

|Rn| = (tL+ 1)
2
= n+ o(n) (4.7)

|Bn| = t2(L2 + 1) = n+ o(n) (4.8)

Moreover,

|Bn|
|Rn|

=
t2(L2 + 1)

(tL+ 1)
2

≥ n+ t2

(tL+ 1)
2 (t ≥

√
n

L
)

≥ n+ t2

(
√
n+ L+ 1)

2 (t ≤
√
n

L
+ 1)

=
n+ t2

n+
√
n
− o(1) as n → ∞

= 1 +
n

L2(n+
√
n)

− o(1) as n → ∞

= 1 +
1

L2
− o(1) as n → ∞

≥ 1 +
c0√
k
− o(1) as n → ∞ (4.9)

Here, c0 = 4
√
2. By Equations (4.7) and (4.9), we have have that

|Bn| ≥ (1 +
c0√
k
)|Rn| − o(n) as n → ∞ (4.10)

Equations (4.7), (4.8) and (4.10) were exactly the properties of planar bipartite graphs that we were after

for the proof of Theorem 4.3. This completes this section and thus the report.
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